
Majorana representations of
triangle-point groups

Madeleine Whybrow, Imperial College London

Supervisor: Prof. A. A. Ivanov



The Monster group - basic facts

I Denoted M, the Monster group is the largest of the 26 sporadic groups in

the classification of finite simple groups

I It was constructed by R. Griess in 1982 as Aut(VM) where VM is a 196 884

- dimensional, real, commutative, non-associative algebra known as the

Griess or Monster algebra

I The Monster group contains two conjugacy classes of involutions - denoted

2A and 2B - and M = 〈2A〉

I If t, s ∈ 2A then ts is of order at most 6 and belongs to one of nine

conjugacy classes:

1A, 2A, 2B, 3A, 3C , 4A, 4B, 5A, 6A.
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The Monster group - the 2A axes

I In 1984, J. Conway showed that there exists a bijection ψ between the 2A

involutions and certain idempotents in the Griess algebra called 2A-axes

I The 2A-axes generate the Griess algebra i.e. VM = 〈〈ψ(t) : t ∈ 2A〉〉

I If t, s ∈ 2A then the algebra 〈〈ψ(t), ψ(s)〉〉 is called a dihedral subalgebra

of VM and has one of nine isomorphism types, depending on the conjugacy

class of ts.
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The Monster group - the 2A axes

Example

Suppose that t, s ∈ 2A such that ts ∈ 2A as well. Then the algebra

V := 〈〈ψ(t), ψ(s)〉〉

is called the 2A dihedral algebra.

The algebra V also contains the axis ψ(ts). In fact, it is of dimension 3:

V = 〈ψ(t), ψ(s), ψ(ts)〉R.
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Monstrous Moonshine and VOAs

I In 1992, R. Borcherds famously proved Conway and Norton’s Monstrous

Moonshine conjectures, which connect the Monster group to modular forms

I The central object in his proof is the Moonshine module, denoted V#. It

belongs to a class of graded algebras know as vertex operator algebras, or

VOA’s

I In particular, we have Aut(V#) = M
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Monstrous Moonshine and VOAs

I If we take a vertex operator algebra

V =
∞⊕
n=0

Vn

such that V0 = R1 and V1 = 0 then V2 is a real, commutative,

non-associative algebra called a generalised Griess algebra

I In 1996, M. Miyamoto showed that there exist involutions τa ∈ Aut(V ),

now known as Miyamoto involutions, which are in bijection with

idempotents a ∈ V2 known as Ising vectors

I If V = V#, then V2
∼= VM, the τa are the 2A involutions and the 1

2a are

the 2A axes.
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Monstrous Moonshine and VOAs

Theorem (S. Sakuma, 2007)

Any subalgebra of a generalised Griess algebra generated by two Ising vectors is

isomorphic to a dihedral subalgebra of the Griess algebra.
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Majorana Theory

I Majorana Theory was introduced by A. A. Ivanov in 2009 as an

axiomatisation of certain properties of generalised Griess algebras

I Definition: A Majorana algebra V is a real, commutative, non-associative

algebra such that

I V = 〈〈A〉〉 where A is a set of idempotents called Majorana axes

I For each a ∈ A, we can construct an involution τ(a) ∈ Aut(V ) called

a Majorana involution

I The algebra V obeys seven further axioms, which we omit here

I The Griess algebra VM is an example of a Majorana algebra, with the 2A

involutions and 2A axes corresponding to Majorana involutions and

Majorana axes respectively

I Almost all known Majorana algebras occur as subalgebras of VM.
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Majorana Theory - Majorana representations

I Majorana algebras can also be studied as representations of certain groups

I Definition A Majorana representation of a finite group G is a tuple

R = (G ,T ,V , ϕ, ψ)

where

I T is a G -stable set of generating involutions of G

I V is a Majorana algebra

I ϕ is a homomorphism G → GL(V )

I ψ : T → V \{0} is an injective mapping such that ψ(tg ) = ψ(t)ϕ(g)

and such that ψ(t) is a Majorana axis for all t ∈ T .
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I We now consider the Monster graph Γ, defined so that

I V (Γ) = 2A

I t, s ∈ 2A are adjacent if and only if ts ∈ 2A

I In 1985, S. P. Norton published a paper addressing the possibility of

proving the uniqueness of the Monster using the Monster graph

I In particular, Norton studied triangle-point configurations in the graph:
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The Monster graph and triangle-point groups

I The vertices {a, b, c , ab} of a triangle-point configuration must necessarily

generate a triangle-point group, which we define to be a group satisfying

the following property:

I Property (σ) A group G has property (σ) if it obeys each of the two

following conditions

I G is generated by three elements a, b and c of order dividing 2, such

that ab is also of order dividing 2

I For any elements t, s ∈ X := aG ∪ bG ∪ cG ∪ (ab)G , the product ts

has order at most 6.

Theorem (S. Decelle, 2012)

If G is a triangle-point group then it must occur as the quotient of one of eleven

groups, all of which are finite.
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The Monster graph and triangle-point groups
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Majorana representations of triangle-point groups

Theorem (Norton, 1985 - proof unpublished)

There are exactly 27 pairwise non-isomorphic groups generated by triangle-point

configurations in the Monster graph.

Theorem (W. 2016)

There are at most 7 pairwise non-isomorphic triangle-point groups which admit

a Majorana representation (G ,T ,V , φ, ψ) such that

aG ∪ bG ∪ cG ∪ (ab)G ⊆ T .

but which do not occur as a triangle-point configurations in the Monster graph.
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